■本当によくわかる電験 2 種二次試験の過去問完全解答 2 0 2 0 年版 第 1 巻における正誤表

○2020年10月11日分

科目	問題	誤植箇所	誤	正
電力・管理	2014年問4	解答(2)	$5 \dot{l}_{r} = 5 \times 50$ = 250 [A] $7 \dot{l}_{r} = 7 \times 50$ = 350 [A]	$5 \dot{I}_{\rm r} = 5 \times 50$ = 250 [V] $7 \dot{I}_{\rm r} = 7 \times 50$ = 350 [V]
	2015年問3	解答(1)b	図 1-1 のように A 点から距離 $l(x < l < L)$ の地点の	図 1-2 のように A 点から距離 $l(x < l < L)$ の地点の
			変圧器	変圧器 g 圧器 g 圧器 g 圧器 g 圧器 g 圧器 g 圧器 g
	2018年問5	ワンポイント解説	$X_{L} = j\omega L = j2\pi f L$ $X_{C} = \frac{1}{j\omega C} = \frac{1}{j2\pi f C}$	$jX_{L} = j\omega L = j2\pi f L$ $-jX_{C} = \frac{1}{j\omega C} = \frac{1}{j2\pi f C}$
			$X_{\rm nL} = j\omega L = j2\pi nf L$ $X_{\rm nC} = \frac{1}{j\omega C} = \frac{1}{j2\pi nf C}$	$X_{nL} = j\omega_n L = j2\pi nfL$ $X_{nC} = \frac{1}{j\omega_n C} = \frac{1}{j2\pi nfC}$

機械・制御	2014年問2	解説(2)	$=\frac{X_2\dot{E}_1}{X_1+X_2}\cdot\cdot\cdot\cdot\cdot\textcircled{4}'$	$=\frac{X_2\dot{E}_1}{X_1+X_2}\cdot\cdot\cdot\cdot\cdot?$
	2015年問2	解説(3)	$P_{1s} = rI_{1n}^{2}$ $r = \frac{P_{1s}}{I_{1n}^{2}}$ $= \frac{1200}{15.152^{2}}$ $= \frac{218}{6600} \times 100$ $= 5.2269 \rightarrow 5.23 [\Omega]$	$P_{1s} = rI_{1n}^{2}$ $r = \frac{P_{1s}}{I_{1n}^{2}}$ $= \frac{1200}{15.152^{2}}$ $= 5.2269 \rightarrow 5.23 [\Omega]$
	2015年問3	解説(4)	したがって、電流は図 1-1 のように流れ、 u_{UV} が出力される。	したがって、電流は図 1-1 のように流れ、 v_{UV} が 出力される。

○2021年1月3日分

科目	問題	誤植箇所	誤	正
機械・制御	2015年問2	問題文 図 2	\dot{V}'_{2n} \dot{I}'_{0} \dot{I}'_{2n}	\dot{V}_{2n} \dot{I}_{2n} \dot{I}_{0} $\boxtimes 2$

○2021年3月16日分

科目	問題	誤植箇所	誤	正
電力・管理	2018年問3	解答(1)	\dot{E}_{s} jXI \dot{E}_{r}	V _s jani
	2019年問4	解答(2)b)	ここで、 $X = L - x'$ とすれば x が 0 から L に変化	ここで、 $X = L - x'$ とすれば x' が 0 から L に変
			するとき,	化するとき、
機械・制御	2015年問2	解答(3)	$X = \sqrt{Z_s^2 - r^2}$	$x = \sqrt{Z_{\rm S}^2 - r^2}$
	2019年問3	解答(4)	_	解説を大幅に改定。詳細は差替えを参照。